Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter G. Jones,* Reinhard Schmutzler and Roland Vogt

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail:
jones@xray36.anchem.nat.tu-bs.de

Key indicators

Single-crystal X-ray study
$T=178 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
R factor $=0.034$
$w R$ factor $=0.087$
Data-to-parameter ratio $=16.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

\{ N-[tert-Butyl(phenyl)phosphino]- N^{\prime}-diphenyl-phosphino- N, N^{\prime}-dimethylurea- $\left.P, P^{\prime}\right\}$ dichloroplatinum(II) chloroform solvate

In the title compound, $\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OP}_{2}\right)\right] \cdot \mathrm{CHCl}_{3}$, the urea ligand is P, P^{\prime}-coordinated, leading to square-planar geometry at the Pt atom [bond lengths $\mathrm{Pt}-\mathrm{P} 2.2102$ (19) \AA to the $\mathrm{Ph}_{2} \mathrm{P}$ moiety and 2.2275 (18) \AA to ${ }^{t} \mathrm{Bu}(\mathrm{Ph}) \mathrm{P} ; \mathrm{Pt}-\mathrm{Cl} 2.3658$ (16) and 2.3658 (18) A \AA. The ligand bite angle is $89.41(7)^{\circ}$. The chloroform molecule is associated with the metal complex via a hydrogen-bond system of the form $\mathrm{C}-\mathrm{H}(\cdots \mathrm{Cl})_{2}$.

Comment

The title compound, (I), formed part of a study of phosphorussubstituted N, N^{\prime}-diorganylureas (Vogt, 1992). It crystallizes as a chloroform monosolvate.

(I)

The formula unit is shown in Fig. 1. The structure determination confirms the expected P, P^{\prime}-bonding mode of the ligand; related derivatives of pentacarbonylchromium and -molybdenum unexpectedly proved to be P, O-bonded (Vogt et al., 1991). The geometry at platinum is square planar; the Pt Cl bond lengths are exactly equal, but the $\mathrm{Pt}-\mathrm{P}$ bond to the $\mathrm{Ph}_{2} \mathrm{P}$ moiety is slightly shorter than that to ${ }^{t} \mathrm{Bu}(\mathrm{Ph}) \mathrm{P}$ (Table 1). The $\mathrm{P}-\mathrm{N}$ bond lengths display a similar qualitative difference, perhaps because of steric effects from the bulky tert-butyl group. The ligand bite angle is 89.41 (7) $)^{\circ}$. The chelate ring is not planar; torsion angles are given in Table 1.

The preparation and structures of several closely related compounds have recently been reported by Slawin et al. (2001). The dichloroplatinum complexes of $\left[\mathrm{Ph}_{2} \mathrm{PN}-\right.$ $\left.(R) \mathrm{C}(\mathrm{O}) \mathrm{N}(R) \mathrm{PPh}_{2}\right]$ ($R=\mathrm{Me}, \mathrm{Et}$) display bond lengths and angles similar to those of the title compound.

The solvent molecule is associated with the metal complex by a three-centre hydrogen bond of the form $\mathrm{C}-\mathrm{H}(\cdots \mathrm{Cl})_{2}$ (Table 2). The role of metal-bonded chlorine as a hydrogenbond acceptor is well established for both 'classical' (Aullón et al., 1998) and 'weak' (Freytag \& Jones, 2000) hydrogen bonds.

Experimental

The title compound was prepared by treating (cyclooctadiene) PtCl_{2} with the phosphinourea ligand in dichloromethane (Vogt, 1992). Single crystals were obtained by evaporation from chloroform.

Received 1 August 2002
Accepted 7 August 2002
Online 16 August 2002

Crystal data

$\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OP}_{2}\right)\right] \cdot \mathrm{CHCl}_{3}$
$M_{r}=821.81$
Orthorhombic, Pbca
$a=16.380$ (4) A
$b=15.653$ (3) \AA
$c=24.074(4) \AA$
$V=6172(2) \AA^{3}$
$Z=8$
$D_{x}=1.769 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nicolet $R 3$ diffractometer
ω scans
Absorption correction: ψ scan (XEMP; Nicolet, 1987) $T_{\text {min }}=0.506, T_{\text {max }}=0.999$
10607 measured reflections 5419 independent reflections 3612 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.087$
$S=1.05$
5419 reflections
339 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Pt}-\mathrm{P} 2$	$2.2102(19)$	$\mathrm{P} 2-\mathrm{C} 20$	$1.806(7)$
$\mathrm{Pt}-\mathrm{P} 1$	$2.2275(18)$	$\mathrm{P} 2-\mathrm{C} 14$	$1.812(7)$
$\mathrm{Pt}-\mathrm{Cl} 2$	$2.3658(16)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.400(9)$
$\mathrm{Pt}-\mathrm{Cl} 1$	$2.3658(18)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.491(8)$
$\mathrm{P} 1-\mathrm{N} 1$	$1.739(6)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.387(8)$
$\mathrm{P} 1-\mathrm{C} 8$	$1.814(7)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.482(9)$
$\mathrm{P} 1-\mathrm{C} 4$	$1.874(6)$	$\mathrm{O}-\mathrm{C} 2$	$1.212(8)$
$\mathrm{P} 2-\mathrm{N} 2$	$1.711(6)$		
$\mathrm{P} 2-\mathrm{Pt}-\mathrm{P} 1$	$89.41(7)$	$\mathrm{C} 20-\mathrm{P} 2-\mathrm{C} 14$	$108.0(3)$
$\mathrm{P} 2-\mathrm{Pt}-\mathrm{C} 2$	$92.05(6)$	$\mathrm{N} 2-\mathrm{P} 2-\mathrm{Pt}$	$114.4(2)$
$\mathrm{P} 1-\mathrm{Pt}-\mathrm{Cl} 2$	$176.43(6)$	$\mathrm{C} 20-\mathrm{P} 2-\mathrm{Pt}$	$116.5(2)$
$\mathrm{P} 2-\mathrm{Pt}-\mathrm{Cl} 1$	$175.87(6)$	$\mathrm{C} 14-\mathrm{P} 2-\mathrm{Pt}$	$109.9(2)$
$\mathrm{P} 1-\mathrm{Pt}-\mathrm{Cl} 1$	$89.86(6)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	$112.6(6)$
$\mathrm{Cl} 2-\mathrm{Pt}-\mathrm{Cl} 1$	$88.46(6)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{P} 1$	$123.0(5)$
$\mathrm{N} 1-\mathrm{P} 1-\mathrm{C} 8$	$100.3(3)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{P} 1$	$120.0(5)$
$\mathrm{N} 1-\mathrm{P} 1-\mathrm{C} 4$	$106.3(3)$	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$	$114.2(6)$
$\mathrm{C} 8-\mathrm{P} 1-\mathrm{C} 4$	$113.5(3)$	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{P} 2$	$121.5(5)$
$\mathrm{N} 1-\mathrm{P} 1-\mathrm{Pt}$	$112.6(2)$	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{P} 2$	$122.7(4)$
$\mathrm{C} 8-\mathrm{P} 1-\mathrm{Pt}$	$108.8(2)$	$\mathrm{O}-\mathrm{C} 2-\mathrm{N} 2$	$122.7(7)$
$\mathrm{C} 4-\mathrm{P} 1-\mathrm{Pt}$	$114.5(2)$	$\mathrm{O}-\mathrm{C} 2-\mathrm{N} 1$	$120.6(6)$
$\mathrm{N} 2-\mathrm{P} 2-\mathrm{C} 20$	$102.0(3)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 1$	$116.7(6)$
$\mathrm{N} 2-\mathrm{P} 2-\mathrm{C} 14$	$105.2(3)$		
$\mathrm{P} 2-\mathrm{Pt}-\mathrm{P} 1-\mathrm{N} 1$	$-14.7(2)$	$\mathrm{Pt}-\mathrm{P} 2-\mathrm{N} 2-\mathrm{C} 2$	$63.5(6)$
$\mathrm{P} 1-\mathrm{Pt}-\mathrm{P} 2-\mathrm{N} 2$	$-31.0(2)$	$\mathrm{P} 2-\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 1$	$-24.9(8)$
$\mathrm{Pt}-\mathrm{P} 1-\mathrm{N} 1-\mathrm{C} 2$	$60.9(5)$	$\mathrm{P} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 2$	$-42.2(8)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 26-\mathrm{H} 26 \cdots \mathrm{Cl} 1$	1.00	2.76	$3.484(9)$	130
$\mathrm{C} 26-\mathrm{H} 26 \cdots \mathrm{Cl} 2$	1.00	2.76	$3.579(9)$	139
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.95	2.77	$3.560(7)$	142

[^0]

The formula unit of the title compound in the crystal. Ellipsoids represent 30% probability levels. H -atom radii are arbitrary.

Methyl H atoms were identified in difference syntheses, idealized and then refined allowing rigid methyl groups to rotate but not tip. The maxima at C1 and C3 were indistinct, which may indicate disorder or appreciable rotation of these methyl groups. Other H atoms were included using a riding model with fixed $\mathrm{C}-\mathrm{H}$ bond lengths (aromatic 0.95 , methyl 0.98 and methine $1.00 \AA$); $U_{\text {iso }}(\mathrm{H})$ values were fixed at 1.2 times the $U_{\text {eq }}$ of the parent atom. Three significant difference peaks (the largest $2.4 \mathrm{e} \AA^{-3}$) do not lie near the Pt atom. They may be caused by a minor but unidentified twinning or disorder component.

Data collection: P3 (Nicolet, 1987); cell refinement: P3; data reduction: XDISK (Nicolet, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. The authors thank Mr A. Weinkauf for technical assistance.

References

Aullón, G., Bellamy, D., Brammer, L., Bruton, E. A. \& Orpen, A. G. (1998). Chem. Commun. pp. 653-654.
Freytag, M. \& Jones, P. G. (2000). Chem. Commun. pp. 277-278.
Nicolet (1987). P3 and XDISK. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Slawin, A. M. Z., Wainwright, M. \& Woollins, J. D. (2001). J. Chem. Soc. Dalton Trans. pp. 2724-2730.
Vogt, R. (1992). PhD Thesis, Technical University of Braunschweig, Germany.
Vogt, R., Jones, P. G., Kolbe, A. \& Schmutzler, R. (1991). Chem. Ber. 124, 2705-2714.

[^0]: Symmetry code: (i) $1-x, 1-y, 1-z$.

